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The effectiveness of genetic selection depends on reliably evaluating the genetic merit of breeding stock 
for traits that are of economic importance. With advancements in molecular technologies, information 
collected at the gene-level can now be incorporated into that genetic evaluation. The outcome is more 
accurate predictions of breeding values, referred to as genomically enhanced estimated breeding values or 
GEBV, in younger animals allowing for quicker rates of genetic progress. Although GEBV have become 
routine to breeding programs in many livestock industries worldwide, they are currently only available in 
one U.S. sheep breed. This study was designed to address that gap by focusing on another key U.S. breed—
the American Rambouillet—that is well known for producing a high-quality wool clip in extensive grazing 
and rangeland systems. 
 
The study was funded by the American Sheep Industry Association Let's Grow Program, the National Sheep 
Industry Improvement Center, and the American Rambouillet Sheep Breeders Association. We assessed 
the impact of including genomic information in the Rambouillet genetic evaluation using data collected by 
the National Sheep Improvement Program (NSIP). The pedigree of 36,297 animals, along with performance 
records for post-weaning (22,781) and yearling (5,653) body weight, yearling greasy fleece weight (11,542) 
and fiber diameter (9,586), and the number of lambs born (15,904), were available. Additionally, 741 of 
these animals had been genotyped, with about 35,000 genomic markers incorporated into our investigations. 
By including the genomic information, the accuracy of the breeding value estimates for post-weaning and 
yearling weights were increased by 41% and 62%, respectively. For number of lambs born, the accuracy 
increased by 37%. Improvement in the reliability of the fiber diameter evaluation was less at 8%, with no 
gain observed for greasy fleece weight. Such was perhaps to be expected. Wool traits are highly heritable. 
When coupled with the considerable performance data available, breeding values were already well 
estimated. Several different approaches for incorporating genomic information were evaluated. The results 
were similar justifying our use of the computational most efficient approach, known as single-step genomic 
best linear unbiased prediction, going forward. 
 
Our key conclusion was that by using genomic information along with pedigree and performance data, we 
obtained as and often much more accurate genetic evaluation of economically important traits in American 
Rambouillet sheep. Notably, the GEBV were considerably more accurate for number of lambs born, which 
can be a challenge to evaluate well in younger animals. More genomic information is needed before this 
technology can be routinely incorporated into the NSIP genetic evaluation of Rambouillet sheep, which is 
a goal of a project already underway—Sheep GEMS—in partnership with American Rambouillet breeders. 
Even so, this study has defined the foundation for that next step, highlighting the opportunity genomics 
offers to enhance the productivity of American Rambouillet sheep. 
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Abstract
Rambouillet sheep are commonly raised in extensive grazing systems in the US, 
mainly for wool and meat production. Genomic evaluations in US sheep breeds, 
including Rambouillet, are still incipient. Therefore, we aimed to evaluate the 
feasibility of performing genomic prediction of breeding values for various traits 
in Rambouillet sheep based on single nucleotide polymorphisms (SNP) or hap-
lotypes (fitted as pseudo-SNP) under a single-step GBLUP approach. A total of 
28,834 records for birth weight (BWT), 23,306 for postweaning weight (PWT), 
5,832 for yearling weight (YWT), 9,880 for yearling fibre diameter (YFD), 11,872 
for yearling greasy fleece weight (YGFW), and 15,984 for number of lambs born 
(NLB) were used in this study. Seven hundred forty-one individuals were geno-
typed using a moderate (50 K; n = 677) or high (600 K; n = 64) density SNP panel, 
in which 32 K SNP in common between the two SNP panels (after genotypic qual-
ity control) were used for further analyses. Single-step genomic predictions using 
SNP (H-BLUP) or haplotypes (HAP-BLUP) from blocks with different linkage dis-
equilibrium (LD) thresholds (0.15, 0.35, 0.50, 0.65, and 0.80) were evaluated. We 
also considered different blending parameters when constructing the genomic 
relationship matrix used to predict the genomic-enhanced estimated breeding 
values (GEBV), with alpha equal to 0.95 or 0.50. The GEBV were compared to the 
estimated breeding values (EBV) obtained from traditional pedigree-based evalu-
ations (A-BLUP). The mean theoretical accuracy ranged from 0.499 (A-BLUP for 
PWT) to 0.795 (HAP-BLUP using haplotypes from blocks with LD threshold of 
0.35 and alpha equal to 0.95 for YFD). The prediction accuracies ranged from 
0.143 (A-BLUP for PWT) to 0.330 (A-BLUP for YGFW) while the prediction bias 
ranged from −0.104 (H-BLUP for PWT) to 0.087 (HAP-BLUP using haplotypes 
from blocks with LD threshold of 0.15 and alpha equal to 0.95 for YGFW). The 
GEBV dispersion ranged from 0.428 (A-BLUP for PWT) to 1.035 (A-BLUP for 

 14390388, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbg.12748 by L

ove L
ibrary, A

cquisitions A
ccount, W

iley O
nline L

ibrary on [10/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.wileyonlinelibrary.com/journal/jbg
https://orcid.org/0000-0002-8057-472X
mailto:﻿
https://orcid.org/0000-0002-5819-0922
http://creativecommons.org/licenses/by/4.0/
mailto:britol@purdue.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjbg.12748&domain=pdf&date_stamp=2022-11-21


      |  217ARAUJO et al.

1   |   INTRODUCTION

The global demand for products from small ruminants is 
increasing. Further scientific innovation, with its greater 
application through increased education and training, is 
needed to meet this demand (Mazinani & Rude,  2020). 
Rambouillet is a common sheep breed in the US origi-
nating from Spanish Merinos that were first moved to a 
farm in Rambouillet, France, late in the eighteenth cen-
tury (American Rambouillet Sheep Breeders Association). 
Known for producing high-quality meat and wool (Thorne 
et al., 2022), Rambouillet sheep are commonly raised in 
extensive grazing systems under a wide range of climatic 
conditions. Rambouillet sheep produces heavy fleeces 
with fine fibre diameter (Thorne et al.,  2021), which 
are suitable for the wool market. Yet, as a dual-purpose 
breed, body weight and reproductive traits are also of 
economic importance in this breed (Thorne et al., 2021). 
Estimated breeding values (EBV) for these sets of traits 
have been generated and shared with US sheep producers 
through the National Sheep Improvement Program (NSIP; 
Notter, 1998). However, genomic evaluations are not yet 
available for the Rambouillet breed in the US.

With the availability of large-scale genomic informa-
tion, the pedigree relationship matrix (A), originally used 
to obtain EBV from Best Linear Unbiased Predictions 
(BLUP), can be replaced or combined with the genomic re-
lationship matrix (G) to predict genomic-enhanced breed-
ing values (GEBV; Aguilar et al.,  2010). The GEBV can 
be more accurate than EBV especially for young animals 
(not yet recorded for the traits of interest) and for lowly 
heritable and sex-limited traits (Meuwissen et al., 2001). 
Furthermore, GEBV can provide advantages for the eval-
uation of difficult- or expensive-to-measure traits (Brito 
et al., 2020; Thorne et al., 2021).

The single-step genomic BLUP (ssGBLUP; Christensen 
& Lund,  2010; Legarra et al.,  2009) is a method that 

simultaneously includes both genotyped and non-
genotyped individuals in the analysis to obtain GEBV for 
all individuals by combining the genomic and pedigree in-
formation. The ssGBLUP is more compatible with current 
breeding programs (where not all breeding individuals 
are genotyped) and provides similar or better results than 
other methods (Guarini et al., 2018; Legarra et al., 2014). 
However, an important consideration when implement-
ing the ssGBLUP method is how to weight the genomic 
and pedigree information (McMillan & Swan, 2017; Meyer 
et al., 2018). This conundrum arises because as G is based 
on the relationships at the genomic marker level, it can be 
difficult to invert, may not be on the same scale as the A, 
and may not account for residual polygenic effects (Meyer 
et al., 2018).

To facilitate the inversion process, and to account for 
residual polygenic effects, two parameters, � and � (with 
� = 0, … , 1 and � = 1 − �), are commonly used to in-
clude a proportion of A in the G that is used in the ge-
nomic evaluation (Meyer et al.,  2018). Values between 
0.95 and 0.99 are common choices to weight G (McMillan 
& Swan, 2017). However, some authors (Gao et al., 2012; 
McMillan & Swan, 2017) showed that different � can af-
fect the accuracy and bias of the single-step genomic 
predictions. McMillan and Swan (2017) used � = 0.50 to 
place equal emphasis on the pedigree and genomic rela-
tionships in Terminal-Sire sheep breeds, due to less dis-
persion and similar accuracies of the GEBV compared to 
the use of higher � values. Therefore, defining the appro-
priate value for these parameters is important as they may 
differ even for different traits in the same population (Gao 
et al., 2012).

The G matrix used in the ssGBLUP can also be com-
puted based on different methods. Fitting single nucleo-
tide polymorphisms (SNP) has been the standard method 
used in genomic analyses. However, haplotypes can also 
be used for both genomic prediction (Araujo et al., 2021; 

YGFW). Similar results were observed for H-BLUP or HAP-BLUP, independently 
of the LD threshold to create the haplotypes, alpha value, or trait analysed. Using 
genomic information (fitting individual SNP or haplotypes) provided similar 
or higher prediction and theoretical accuracies and reduced the dispersion of 
the GEBV for body weight, wool, and reproductive traits in Rambouillet sheep. 
However, there were no clear improvements in the prediction bias when com-
pared to pedigree-based predictions. The next step will be to enlarge the training 
populations for this breed to increase the benefits of genomic predictions.

K E Y W O R D S

Best Linear Unbiased Predictions, genomic-enhanced estimated breeding values, haplotype 
prediction, linkage disequilibrium, small ruminants, single-step genomic BLUP
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Feitosa et al., 2020; Teissier et al., 2020) and genome-wide 
association (Araujo et al., 2022; Bovo et al., 2021; Feitosa 
et al., 2021) studies. Haplotypes are the alleles from a set 
of adjacent loci (sizable regions called haplotype blocks 
or haploblocks) expected to be inherited together due to 
lower recombination (Gabriel et al.,  2002). Haplotypes 
are also expected to be in higher linkage disequilibrium 
(LD) with the quantitative trait loci (QTL) than the sin-
gle SNP (Calus et al., 2008) and capture epistatic effects 
(Hess et al., 2017; Jiang et al., 2018), which could result in 
higher accuracies and lower bias in the genomic predic-
tions (Araujo et al., 2021; Calus et al., 2008).

Previous studies using haplotypes in genomic predic-
tions in livestock have shown a varying improvement in 
the accuracies of genomic prediction, ranging from no to 
small (Mucha et al., 2019) up to 22% (Teissier et al., 2020) 
increases in GEBV accuracy compared to SNPs. The po-
tential reasons for these inconsistencies are multifaceted. 
The first one is the genetic background of the populations. 
Most studies evaluating genomic predictions based on 
haplotypes were performed in cattle and purebred pop-
ulations (e.g., Cuyabano et al., 2014, 2015; Feitosa et al., 
2020; Mucha et al., 2019; Xu et al., 2020), which have rel-
atively low effective population size (Ne). Furthermore, in 
these studies, the factors that might contribute to better 
haplotype-based predictions (e.g., epistasis) were not fully 
explored. Second, the method used to create the haplo-
types can influence the results (Araujo et al., 2021; Hess 
et al., 2017). Several methods have been investigated in-
cluding genomic windows with different numbers of SNP 
(usually in kb) and LD based, for instance, on different 
threshold levels (Teissier et al., 2020). The coding of the 
haplotype alleles and how to create the genomic relation-
ship matrices including haplotypes also show differences 
among studies. Haplotypes tend to be multiallelic and 
can be either fitted as multiallelic markers in a Genomic 
Restricted Maximum Likelihood-BLUP (GREML-GBLUP) 
approach (Da,  2015; Prakapenka et al.,  2020) or as bial-
lelic pseudo-SNP (ps-SNP) defined based on the haplo-
type alleles in a ssGBLUP approach (Teissier et al., 2020). 
Further exploration of the potential value of using hap-
lotype information in genomic prediction is still needed, 
particularly in small ruminants.

The implementation of genomic selection is still in-
cipient in small ruminants, mainly due to the relatively 
high cost of genotyping per animal (Mrode et al., 2018), 
smaller herd sizes, and lower adoption of reproductive 
technologies such as artificial insemination (in compari-
son to cattle). Araujo et al. (2021) hypothesized that fitting 
haplotypes in genomic predictions could outperform the 
use of SNP in populations with high Ne because it would 
better capture the complex interactions within haplob-
locks. However, these authors did not simulate epistasis 

and recommended new studies in real populations. Sheep 
is a specie in which moderate to high Ne are common in 
commercial populations (Brito, Mcewan, et al., 2017; Kijas 
et al.,  2012), with predictions of GEBV based on haplo-
types still scarce (Araujo et al., 2021). Therefore, we aimed 
to evaluate the accuracy, bias, dispersion, and theoretical 
accuracy (TA) of GEBV using ssGBLUP fitting SNP or 
haplotypes (as ps-SNP) for body weight, wool, and repro-
ductive traits in Rambouillet sheep and make compari-
sons with traditional pedigree-based genetic evaluations. 
We also evaluated the effect of constructing the haplo-
types with different LD thresholds and using alternative � 
values when forming the G matrix. Finally, recommenda-
tions for future steps for the implementation of genomic 
evaluations in Rambouillet sheep were provided.

2   |   MATERIAL AND METHODS

No ethical review and approval were needed for this study 
because all the datasets used were provided by commer-
cial breeding operations.

2.1  |  Phenotypic and pedigree data

The phenotypic and pedigree datasets were provided by 
the NSIP, which included three body weight traits [birth 
weight (BWT), postweaning weight (PWT), and yearling 
weight (YWT)], two wool traits [yearling fibre diameter 
(YFD) and yearling greasy fleece weight (YGFW)] and 
one reproductive trait [number of lambs born (NLB)] as 
described in Table 1. The BWT trait represents the lamb 
weight recorded within 24 h after birth, while PWT and 
YWT are the body weights recorded at five to 10 (151–
304 days) and 10 to 14 (305–428 days) months of age, re-
spectively. The wool traits were measured at yearling age 
(10–14 months). The pedigree dataset had 36,297 indi-
viduals born from 1985 to 2021, spanning up to 15 gen-
erations from animals with phenotypic records and with 
an average (standard deviation) Pedigree Completeness 
Index (PCI) of 0.57 (0.34). The number of generations 
traced back and PCI were calculated using the “optiSel” r 
package (Wellmann, 2019).

The phenotypic datasets used for the genetic and ge-
nomic prediction analyses for the body weight and wool 
traits were processed previously by the NSIP, which pro-
vided preadjusted phenotypes (http://nsip.org/wp-conte​
nt/uploa​ds/2015/04/Lambp​lan-TC-Repor​t-Notter.pdf). 
Briefly, the preadjustment considered birth and rearing 
type (fixed levels as a multiplicative adjustment), and age 
of dam (measured in days) at recording (quadratic and lin-
ear regressions). No preadjustments were done for NLB. 
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The data underwent quality control (QC) with observa-
tions deviating more than three standard deviations from 
the mean removed from further analyses.

Contemporary groups (CG) were created by concat-
enating flock, year, season, management group, sex, 
recording date, and 70-day age groups to split lambing 
(birth) dates into 70-day consecutive periods for PWT, 
YWT, YFD, and YGFW. For BWT, the CG included all 
the effects previously mentioned for body weight and 
wool traits, excluding recording date; 35- rather than 70-
day age group were also used. The CG for the NLB were 
created considering ewe's flock, birth year, season, man-
agement group, and parturition number (e.g., ewe's first, 
second, or third lambing). The preadjusted phenotypes 
for body weight and wool traits and the NLB phenotypes 
were then adjusted for the CG effect, so that the phe-
notypes analysed—henceforth referred to as corrected 
phenotypes—accounted for all systematic environmental 
effects considered in the NSIP genetic evaluations. The 
CG for all analysed traits were treated as fixed effects and, 
as a final QC step, CG with less than three animals and 
with no phenotypic variability within CG were removed.

2.2  |  Genotypic data

Samples from 741 animals were genotyped using the 
GeneSeek Genomic Profiler Ovine 50 K array (Neogen 

Corporation) (52,260 SNP; 677 animals) and BovineHD 
BeadChips (Illumina Inc.) (606,006 SNP; 64 animals) 
SNP panels by Neogen (GeneSeek, A Neogen Company). 
These individuals were chosen to be genotyped based on 
pedigree-based relatedness (genetic connectedness) aim-
ing to capture as much genetic diversity as possible in ani-
mals with DNA samples, coming from nine representative 
NSIP Rambouillet flocks. Connectedness values were 
derived from prediction error co-variances among EBV 
(Kuehn et al.,  2007, 2008; Lewis et al.,  2005) for pread-
justed PWT. In these analyses, an animal model was fitted 
with CG as fixed, and additive and residual effects as ran-
dom. As an additional criterion, animals with phenotypic 
information, either on themselves or on their progeny, for 
most traits analysed were prioritized for genotyping.

Approximately 35 K (35,105) autosomal SNP were in 
common between the two panels. The QC for the geno-
typic data was done using the plink 1.9 software (Purcell 
et al.,  2007), with SNP markers with MAF < 0.05, call 
rate < 0.90, extreme departure from Hardy–Weinberg equi-
librium (P < 10−8), located on non-autosomal chromo-
somes, or a duplicate on the array removed. Samples with 
call rate < 0.90 were also removed. A total of 32,584 SNP 
and 722 samples remained for further analyses. The aver-
age distance between adjacent markers was 75.433 kb, with 
standard deviation, minimum, median, and maximum 
equal to 67.275 kb, 0.002 kb, 59.492 kb, and 2307.471 kb, re-
spectively, in the 32 K panel used for the analyses.

T A B L E  1   Description of the datasets used for the genetic and genomic predictions of birth weight (BWT), postweaning body weight 
(PWT), yearling body weight (YWT), yearling fibre diameter (YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLB) 
in Rambouillet sheep

Dataset Variablea

Trait

BWT (kg) PWT (kg) YWT (kg) YFD (μm) YGFW (kg) NLB (count)

Complete Average 4.86 35.36 59.99 18.87 3.04 1.71

SD 1.02 7.78 15.28 1.67 0.81 0.59

Individuals (n) 28,317 22,781 5653 9586 11,542 6846

Records (n) 28,317 22,781 5653 9586 11,542 15,904

CG (n) 427 461 110 195 210 445

Genotypes (n) 587 632 442 529 502 242

Partial Average 4.77 35.01 58.03 18,92 2.99 1.79

SD 0.98 7.12 13.54 1.57 0.72 0.59

Individuals (n) 22,115 17,118 3657 6808 9055 5407

Records (n) 22,115 17,118 3657 6808 9055 13,790

CG (n) 404 402 101 175 198 411

Genotypes (n) 469 456 341 426 402 138

Focal (n) 118 176 101 103 100 104
a Standard deviation (SD); number of phenotyped individuals (Individuals), records (Records), contemporary groups (CG), and genotypes (Genotypes) included 
in the whole and partial datasets (after quality control); and number of focal (also known as validation) individuals (Focal). All genotyped and focal animals 
had own phenotypes or progeny with phenotypes. The complete data set contained all corrected phenotypes after quality control, and the partial data set was a 
subset of the complete data truncated by the birth year of the focal individuals (young selection candidates used to compare the methods evaluated).
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2.3  |  Haplotype construction

The SNP genotypes for all samples were phased using the 
fimpute v.3.0 software (Sargolzaei et al.,  2014) to infer 
the parental inheritance (i.e., which allele came from 
which parent), before creating the haplotype blocks. LD 
haploblocks were constructed using the r2 metric (Hill & 
Robertson,  1968) with the thresholds of 0.15, 0.35, 0.50, 
0.65, and 0.80 and based on the Big-LD approach (Kim 
et al., 2018). The “gpart” package (Kim et al., 2019) im-
plemented in r (R Core Team, 2020) was used to build the 
haploblocks.

2.4  |  Genetic evaluation

2.4.1  |  Pedigree-based predictions

Three linear mixed models for the pedigree-based BLUP 
(A-BLUP) were used in this study, which are defined as 
follow:

 

 

where the model (1) is an additive genetic model with y1 
representing a vector of single corrected phenotypic re-
cords, μ is the overall mean, u is the random direct additive 
genetic effect, and e is the random residual. The model (2) 
is a repeatability model, in which p is the random perma-
nent environment effect, y2 contains the repeated corrected 
phenotypic records, and the other vectors are the same as in 
model (1). The model (3) also includes the random mater-
nal additive genetic and maternal permanent environment 
effects, m and q, respectively. The 1′ is a vector of ones used 
to calculate the overall mean and Z, W, Z2, and S are the inci-
dence matrices that relates the corrected phenotypic records 
to the random direct additive, permanent environment, ma-
ternal additive, and maternal permanent environment ef-
fects, respectively. The random effects for the above models 
were assumed to be normally distributed with (co)variance 
structures as follows:

 

 

where �2u, �2p, �
2
m, �2q, and�2e are the additive genetic, per-

manent environment, maternal genetic, maternal perma-
nent environment, and residual variances, respectively, and 
model (1) was used to make the EBV prediction for the YFD, 
model (2) for NLB, and model (3) for BWT, PWT, YWT, and 
YGFW.

The blupf90 software (Misztal et al., 2018) was used 
to predict the EBV assuming the variance components 
were known (Table 2). To be consistent with the national 
genetic evaluation underway in Rambouillet sheep, the 
models fitted and the variance components used to predict 
the EBV were provided by NSIP.

2.4.2  |  Single-step genomic BLUP using SNP

The corrected phenotypes, models, and variance com-
ponents used to predict the GEBV under the single-step 
genomic BLUP using SNP (H-BLUP) approach were simi-
lar to the ones used in A-BLUP, except for the inclusion 
of genomic relationships from the genotyped individu-
als. In the assumptions of the H-BLUP, the y vector had 
corrected phenotypes for genotyped and non-genotyped 
animals and u∼N

(
0,H�2u

)
. H is a relationship matrix that 

combines the pedigree and the genomic relationship ma-
trices (Legarra et al., 2009), with its inverse computed as 
follows (Aguilar et al., 2010):

where A−1 is the inverse of the pedigree relationship ma-
trix, A22 and A−1

22
 are the pedigree relationship matrix for 

the genotyped animals and its inverse, respectively, and G is 
the genomic relationship matrix calculated as proposed by 
Vanraden (2008):

where M has the dimension of n genotyped animals by 
m SNP markers (coded as 0, 1, or 2 for the absence, pres-
ence of one copy, or presence of two copies of the refer-
ence allele, respectively) and is centred based on twice of 
the allelic frequencies (pi; 1 − pi). The pregsf90 software 

(1)y1 = 1’� + Zu + e ,

(2)y2 = 1�� + Zu +Wp + e ,

(3)y3 = 1�� + Zu + Z2m + Sq + e ,

(4)Model (1): Var

[
u

e

]
=

[
A�2u 0

0 I�2e

]
,

(5)
Model (2): Var

⎡⎢⎢⎢⎣

u

p

e

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

A�2u 0 0

0 I�2p 0

0 0 I�2e

⎤⎥⎥⎥⎦
,

(6)Model (3): Var

⎡⎢⎢⎢⎢⎣

u

m

q

e

⎤⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

A�2u 0 0 0

0 A�2m 0 0

0 0 I�2q 0

0 0 0 I�2e

⎤
⎥⎥⎥⎥⎥⎦

,

(7)H−1 = A−1 +

[
0 0

0 �
(
�G+βA22

)−1
−ωA−1

22

]
,

(8)G =
MM�

2
∑
pi
�
1 − pi

� ,
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(Misztal et al., 2018) was used to create the H−1 matrix in-
cluding the pedigree information, with � and ω parameters 
assumed as the default values (1.0). Different values of � 
and β were used to evaluate the impact of increasing the 
proportion of A22 on G, with � = 0.95 and 0.50, and thereby 
β = 0.05 and 0.50, respectively, in which the former is the 
default value in the pregsf90 software and the later was 
suggested as the choice in Terminal Sire sheep populations 
(McMillan & Swan, 2017).

2.4.3  |  Single-step genomic BLUP 
using haplotypes

The model and assumptions used in the single-step 
genomic BLUP including haplotypes (HAP-BLUP) ap-
proach were similar to those described for H-BLUP. 
However, the G used in the 

(
�G+βA22

)−1 component was 
constructed using non-LD-clustered SNP (NCSNP) and 
ps-SNP. A ps-SNP corresponds to one of the unique haplo-
type alleles present within a haploblock, coded as 0, 1, or 2 
to account for the number of copies of the reference hap-
lotype allele, similar to Teissier et al.  (2020) and Araujo 
et al. (2021). As a haploblock can be multi-allelic, several 
ps-SNP can be created from a haploblock. The ps-SNP were 
subjected to the same QC criteria as the SNP before their 
use for genomic prediction. The number of NCSNP plus 
ps-SNP before QC ranged between 33,922 and 44,695 with 
the LD thresholds of 0.80 and 0.15, respectively, while the 
number of NCSNP plus ps-SNP after QC (markers used in 
the haplotype predictions) ranged from 32,649 to 39,787 
with the same LD thresholds (Appendix S1: Table S1). All 
the scenarios regarding the different combinations of � 
and β parameters described for H-GBLUP were also tested 
in the HAP-BLUP method.

2.5  |  Comparing genetic and genomic 
predictions

The whole (complete) and partial datasets used to com-
pare the genetic and genomic predictions (Legarra & 
Reverter,  2018) for each trait (Table  1) were defined 
separately based on time thresholds considering the 
birth date of the genotyped animals as the reference. 
The whole datasets included all corrected phenotypic 
records and genotyped individuals with corrected phe-
notypes on itself or on its progeny. As the number of 
genotyped individuals was small, the division into par-
tial datasets considered the following two criteria: (1) at 
least 100 genotyped individuals with average EBV ac-
curacy higher than 0.50 as focal individuals (selection 
candidates with masked corrected phenotypes on itself 
and on its progeny) were kept; and (2) at least 20% of the 
genotyped individuals as focal individuals were kept. 
Initially, as the genotyped animals were born between 
2009 and 2017, all individuals that were born in 2017 
were elected to be focal individuals. However, with this 
approach it was not possible to keep at least 100 geno-
typed individuals in the focal set for all traits. Ultimately, 
different dates were used to divide the whole data in the 
partial datasets (April 21, 2016 for BWT and PWT, April 
13, 2016 for YWT, April 26, 2016 for YFD, April 20, 2016 
for YGDW, and 04/06/2016 for NLB).

The number of flocks included in the whole dataset 
for BWT, PWT, YWT, YFD, YGFW, and NLB were 15, 23, 
17, 19, 19, 15, respectively, and in the partial datasets were 
13, 13, 11, 12, 12, 12, respectively. We used the variance of 
the difference in unit effects (VED) to evaluate the con-
nectedness between the genotyped samples considered 
as training and validation (focal) in the whole and partial 
datasets. The VED is based on the variance of unit effects, 

Parametera BWT PWT YWT YFD YGFW NLB

�2u 0.085 3.211 15.402 1.311 0.122 0.025

�2p – – – – – 0.009

�2m 0.091 1.926 1.777 – 0.013 –

�2q 0.061 1.926 1.777 – 0.013 –

�2e 0.372 25.046 40.283 0.989 0.181 0.250

�2p 0.610 32.110 59.240 2.300 0.330 0.284

h2 0.140 0.100 0.260 0.570 0.370 0.090

p2 – – – – – 0.030

h2m 0.150 0.060 0.030 – 0.040 –

c2 0.100 0.060 0.030 – 0.040 –
a �2u = additive genetic variance, �2p = permanent environment variance associated with repeated 
records, �2m = maternal additive genetic variance, �2q = maternal permanent environment variance, 
�2
e
 = residual variance, �2p = phenotypic variance, h2 = heritability for the direct additive genetic effect, 

p2 = repeatability,h2m = heritability for the maternal additive genetic effect, c2 = fraction of the phenotypic 
variance explained by the maternal permanent environment effect.

T A B L E  2   Variance components and 
genetic parameters used to predict the 
estimated breeding values for birth weight 
(BWT), postweaning body weight (PWT), 
yearling body weight (YWT), yearling 
fibre diameter (YFD), yearling greasy 
fleece weight (YGFW), and number of 
lambs born (NLB) in Rambouillet sheep
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which approximates the mean prediction error variance 
(PEV) over unities (Kennedy & Trus,  1993), and, as in 
the PEV, the lower the value the more connected are the 
units under consideration. The “GCA” r package (Yu & 
Morota, 2021) was used to calculate the VED, in which the 
choice for the VED statistic was done due to calculating 
the connectedness in a single-step and being less compu-
tationally expensive than PEV of the difference. The VED 
for the individuals used to evaluate the genomic predic-
tions for BWT, PWT, YWT, YFD, YGFW, and NLB were 
0.046, 0.059, 0.031, 0.008, 0.017, and 0.282, respectively, 
suggesting sufficient connectedness as the values were 
low, especially for BWT, PWT, YWT, YFD, and YGFW.

The performance of genetic and genomic predictions 
was evaluated using the linear regression (LR) method as 
described by Legarra and Reverter (2018). The LR method 
provides a series of statistics derived from the comparison 
of genetic evaluations using the whole and partial data-
sets, resulting in easy-to-use methods to evaluate the reli-
ability of the predictions (Legarra & Reverter, 2018). The 
LR statistics obtained were:

 

 

where cov
(
(G)EBVW , (G)EBVP

)
 is the covariance be-

tween the GEBV or EBV in whole ((G)EBVW) and partial 
((G)EBVP ) datasets, F is the average inbreeding, ave() repre-
sent the arithmetic average function, ̂u(G)EBVW

 and ̂u(G)EBVP
 

are the predicted GEBV or EBV in the whole and partial 
datasets, respectively, and var

(
(G)EBVP

)
 is the variance of 

the GEBV or EBV. The other components were previously 
described.

In addition to the LR statistics, the individual theoreti-
cal accuracies (TA) were calculated for the focal individu-
als according to Van Vleck (1993):

where sei2 is the square of the GEBV or EBV standard error 
for the individual i, fi is the inbreeding coefficient for the in-
dividual i, and the other variables were previously described. 
The TA was calculated for both whole and partial datasets 
but presented only for the whole dataset to highlight the 

overall increase in the TA comparing GEBV and EBV con-
sidering all phenotypes available.

2.6  |  Evaluated scenarios

The scenarios consisted of combinations of (1) A-BLUP, 
(2) H-BLUP with �  =  0.95 and 0.50 to construct G, and 
(3) HAP-BLUP using ps-SNP from different LD thresholds 
(0.15, 0.35, 0.50, 0.65, and 0.80) also with � = 0.95 and 0.50 
to construct G. In total, 13 scenarios were evaluated for 
each of the six traits, resulting in 78 analyses.

3   |   RESULTS

3.1  |  Genomic prediction accuracies

All the detailed results for the genetic and genomic pre-
dictions using the 32 K panel including or not the haplo-
types are present in the Appendix S2: Tables S1–S6. The 
prediction accuracies for body weight, wool, and NLB 
traits ranged from 0.143 (A-BLUP for PWT; Appendix S2: 
Table  S2) to 0.330 (A-BLUP for YGFW; Appendix  S2: 
Table  S5). The lowest and highest prediction accuracies 
were observed for NLB and wool (both YFD and YGFW) 
traits, respectively. Similar prediction accuracies were ob-
served for the HAP-BLUP across different LD thresholds, 
regardless of the � value and trait evaluated. We, there-
fore, only presented the results for the HAP-BLUP con-
sidering the LD threshold of 0.50 (HAP-BLUP-LD_0.50) 
to compare the predictions between pedigree, SNP, and 
haplotype-based methods for all traits (Figure 1).

Using genomic information provided similar or higher 
GEBV prediction accuracies compared to EBV, except 
for BWT and YGFW. An increase of ~41% (~0.06), ~62% 
(~0.12), ~8% (~0.02), and ~37% (~0.05) in the GEBV pre-
diction accuracies was observed for the PWT, YWT, YFD, 
and NLB, respectively, when using � equal to 0.95. Using 
an � of 0.50 generally resulted in half of the increase in the 
prediction accuracy compared to 0.95. No gains in GEBV 
accuracy were observed for BWT and YGFW by using ge-
nomic information. The increase in the accuracy using the 
SNP- and haplotype-based models were similar, with dif-
ferences smaller than 1% for all traits.

3.2  |  Bias

The prediction bias ranged between −0.104 (H-BLUP 
for PWT; Appendix S2: Table S2) and 0.087 (HAP-BLUP 
using haplotypes from blocks with LD threshold of 0.15 
and � of 0.95 for YGFW; Appendix S2: Table S5). Different 

(9)Accuracy =

√√√√cov
(
(G)EBVW , (G)EBVP

)
(
1 − F

)
�2u

,

(10)Bias = ave
(

̂u(G)EBVP

)
− ave

(
̂u(G)EBVW

)
,

(11)Dispersion =

(
cov

(
(G)EBVW , (G)EBVP

)

var
(
(G)EBVP

)
)

− 1,

(12)TA =

√
1 −

sei
2

(
1 + fi

)
�2u

,
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from what was observed for the GEBV accuracies, the pre-
dictions for NLB were in general less biased than the other 
traits while those for PWT were the most biased. The pre-
diction bias for the haplotype-based methods was similar 
across LD thresholds (used to create the haploblocks) and, 
thus, only the HAP-BLUP-LD_0.50 were presented for 
comparison purposes (Figure 2).

Incorporating genomic information in the analyses 
resulted in similar or more bias when compared to the 
pedigree-based prediction. Alpha equal to 0.95 tended to 
reduce the bias for BWT and YWT, while the opposite was 
observed for the other traits (i.e., using � = 0.50 reduced 
the prediction bias for the other traits).

3.3  |  Dispersion

The GEBV dispersion ranged from −0.572 (A-BLUP 
for PWT; Appendix  S2: Table  S2) to 0.035 (A-BLUP for 
YGFW; Appendix  S2: Table  S5). The dispersion was 
closer to zero (expected value for this statistic under no 
dispersion) for YGFW while it was more distant from 
(and typically below) zero for BWT and PWT indicating 

GEBV were overestimated. GEBV predictions using hap-
lotypes from blocks with different LD thresholds resulted 
in similar dispersion of the GEBV. Therefore, the HAP-
BLUP-LD_0.50 scenario was also used to represent the 
haplotype-based methods to compare with A-BLUP and 
H-BLUP (Figure 3).

A dispersion of −0.29, −0.16, and − 0.35 was observed for 
PWT, YWT, and NLB, respectively, using H-BLUP and HAP-
BLUP-LD_0.50 with � of 0.95. Those values were closer to 
zero than when using A-BLUP (−0.57, −0.35, and −0.39, re-
spectively), showing reduced dispersion for genomic-based 
models. Pedigree-based models presented similar or lower 
dispersion for BWT and wool traits. The dispersion with 
H-BLUP and HAP-BLUP-LD_0.50 showed similar results 
regardless of the � values. Alpha equal to 0.95 tended to 
present better dispersion for PWT, YWT, and NLB compared 
to 0.50, while the opposite was observed for the other traits.

3.4  |  Theoretical accuracy

The mean TA ranged from 0.499 (A-BLUP for PWT; 
Appendix  S2: Table  S2) to 0.795 (HAP-BLUP using 

F I G U R E  1   Prediction accuracies for birth weight (BWT), postweaning weight (PWT), yearling weight (YWT), yearling fibre diameter 
(YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLB) in Rambouillet sheep using pedigree BLUP (A-BLUP), 
SNP-based single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP fitting haplotypes from blocks with LD threshold of 0.50 
(HAP-BLUP-LD_0.50). Different � values (0.50 or 0.95) were used to create the genomic relationship matrices [Colour figure can be viewed 
at wileyonlinelibrary.com]
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haplotypes from blocks with LD threshold of 0.35 and 
alpha equal to 0.95 for YFD; Appendix  S2: Table  S4). 
Considering all traits, the mean TA was 0.631 (0.085) 
and TA values were higher for YFD and lower for PWT. 
Results from the haplotype-based methods had similar 
mean TA regardless of the LD threshold used to construct 
the haploblocks for all traits. The HAP-BLUP-LD_0.50 
was, therefore, again used to represent the HAP-BLUP 
methods (Figure 4).

The genomic information tended to improve the 
mean TA for all traits, with increases up to ~7% (~0.04), 
~9% (~0.05), ~4% (~0.03), ~3% (~0.02), ~5% (~0.03), and 
~6% (~0.04) for BWT, PWT, YWT, YFD, YGFW, and NLB, 
respectively, using H-BLUP and HAP-BLUP-LD_0.50 
with � of 0.95. Negligible difference (less than 1%) was 
observed in the increase of the mean TA between H-
BLUP and HAP-BLUP-LD_0.50 with � of 0.95. Using 
�equal to 0.50 resulted in the smallest increase in the 
mean TA (less than 2%) with both SNP- and haplotype-
based methods for all traits. At the individual level, 
the TA using H-BLUP with � of 0.95 were higher com-
pared to A-BLUP for the younger individuals and those 

with no phenotypic information (sires and dams with 
genotyped progeny) in the partial datasets for all traits 
(Figure 5).

Increase in the TA for ungenotyped close relatives 
(progeny or parents) of the genotyped individuals 
when using genomic information was also observed 
(Appendix S3: Figure S1), although the increases were 
smaller than those for the genotyped individuals. In 
the case of ungenotyped unrelated (animals with no 
pedigree links) individuals to the genotyped cohort, 
most of the TA with or without genomics were simi-
lar (Appendix  S3: Figure  S2); only few of these unre-
lated individuals benefited from the use of genomic 
information.

4   |   DISCUSSION

Genomic selection is the state-of-the-art in modern 
sheep breeding programs. Here we present the first 
results of genomic predictions for body weight, wool, 
and reproductive traits in North American Rambouillet 

F I G U R E  2   Prediction bias for birth weight (BWT), postweaning weight (PWT), yearling weight (YWT), yearling fibre diameter (YFD), 
yearling greasy fleece weight (YGFW), and number of lambs born (NLB) in Rambouillet sheep using pedigree BLUP (A-BLUP), SNP-based 
single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP fitting haplotypes from blocks with LD threshold of 0.50 (HAP-
BLUP-LD_0.50). Different � values (0.50 or 0.95) were used to create the genomic relationship matrices [Colour figure can be viewed at 
wileyonlinelibrary.com]
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sheep. We performed single-step genomic predictions 
fitting SNP or haplotypes to create the genomic rela-
tionship matrices used to compute GEBV. Despite the 
small dataset, promising results were obtained, which 
can be used as a starting point for the implementation 
of genomic selection in Rambouillet sheep as well as in 
other sheep populations.

4.1  |  Genetic and genomic 
prediction results

The accuracy of genomic predictions relies mainly 
on the trait heritability, LD between SNP and QTL 
(Meuwissen et al., 2001), population structure, and ge-
netic diversity of the population (Daetwyler et al., 2012). 
For Rambouillet sheep, the prediction accuracies for 
the pedigree- and genomic-based models followed the 
expected pattern in being higher for more heritable 
traits (Table  1; Figure  1). Correspondingly, the small-
est (~0.02 in absolute value, ~8%) differences between 

the pedigree- and genomic-based prediction accuracies 
were observed for YFD, which was the trait with the 
highest heritability (0.57), in comparison to NLB (~0.05 
in absolute value, ~37%)—the trait with lowest herit-
ability (0.09).

Despite the expectation of the theoretical accura-
cies of genomic predictions to be higher for traits with 
higher heritability (Meuwissen et al., 2001), benefits of 
using GEBV are expected to be higher for traits with low 
heritability, sex-limited, hard-to-measure, and recorded 
late in life, especially in sheep (Brito, Clarke, et al., 2017; 
Brown et al., 2018). For more highly heritable and eas-
ily measured traits, given that the assumptions for the 
MME (Henderson, 1984) are met (e.g., polygenic archi-
tecture, deep and accurate pedigree data, large number 
of phenotypic records, no preselection), the EBV are 
expected to be BLUP and predict the unknown true 
breeding values well. In other words, the prediction ac-
curacies using A-BLUP for highly heritable traits where 
individuals and/or their progeny have phenotypes are 
already expected to be high.

F I G U R E  3   Dispersion of the genomic-enhanced breeding values (GEBV) for birth weight (BWT), postweaning weight (PWT), yearling 
weight (YWT), yearling fibre diameter (YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLB) in Rambouillet 
sheep using pedigree BLUP (A-BLUP), SNP-based single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP using haplotypes 
from blocks with LD threshold of 0.50 (HAP-BLUP-LD_0.50). Different � values (0.50 or 0.95) were used to create the genomic relationship 
matrices [Colour figure can be viewed at wileyonlinelibrary.com]
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As the genotyped cohort used in this study is the first 
official attempt to create a training population for ge-
nomic evaluations of Rambouillet sheep, the genotyped 
individuals included key ancestors and other selected 
animals with phenotypes or representative progeny with 
phenotypes for the traits evaluated. In this case, the EBV 
for those individuals were well estimated, especially for 
YFD and YGFW (higher heritabilities; Table 2), with small 
and negligible increase in the prediction accuracy for the 
genomic- compared to pedigree-based models. For such 
highly heritable traits, using GEBV would still be more 
important to select breeding candidates at a younger age, 
that is, measured only at yearling age. The substantial in-
crease in the prediction accuracy of PWT, YWT, and NLB 
(higher than ~37%) shows that greater genetic gains can 
be achieved for these traits by including genomic informa-
tion, as the accuracy is one of the main components of the 
selection response (Falconer & Mackay, 1996).

The genomic prediction accuracies observed in our 
study were within the range for most of the economic 
traits in sheep, which is between 0.20 and 0.50 according 
to Brown et al. (2018), especially when using � of 0.95 to 

construct the G matrix. Oliveira et al.  (2021) observed 
prediction accuracies for BWT ranging from 0.06 to 0.13 
using H-BLUP for Norwegian White and New Zealand 
Composite sheep populations. Unlike what was observed 
in the current study, Moghaddar et al. (2019) showed ac-
curacies for genomic predictions ranging between 0.40 to 
0.60 for PWT, 0.30 to 0.40 for yearling clean fleece weight, 
and 0.30 to 0.50 for YFD using BayesR and GBLUP for 
purebred Merino and crosses between Merino and Border 
Leicester. Genomic prediction accuracies of 0.24 and 
0.28 were observed for YGFW using GBLUP and BayesR, 
respectively, and 0.31 and 0.35 for YFD for the same 
methods, respectively, in Merino and crossed Merino 
(Bolormaa, Brown, et al., 2017). For NLB, Bolormaa, Swan, 
et al. (2017) reported genomic prediction accuracies rang-
ing from 0.15 to 0.56 considering different validation strat-
egies and prediction based on GBLUP and BayesR under 
cross-validation approaches for Merino sheep. Those 
differences in the genomic prediction accuracies for the 
same traits are also related to the statistical model and val-
idation method used in the evaluations, beyond the other 
factors previously mentioned (e.g., heritability, population 

F I G U R E  4   Mean theoretical accuracies for birth weight (BWT), postweaning weight (PWT), yearling weight (YWT), yearling fibre 
diameter (YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLB) in Rambouillet sheep using pedigree BLUP 
(A-BLUP), SNP-based single-step GBLUP (H-BLUP), and haplotype-based single-step GBLUP using haplotypes from blocks with linkage 
disequilibrium (LD) threshold of 0.50 (HAP-BLUP-LD_0.50). Different � values (0.50 or 0.95) were used to create the genomic relationship 
matrices [Colour figure can be viewed at wileyonlinelibrary.com]
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structure, and genetic diversity). Also, GEBV accuracies 
were not calculated in the same way across all the studies, 
but the LR method used in this study is currently consid-
ered as the gold-standard approach.

The regression coefficient of the adjusted (or cor-
rected) phenotypes or EBV on the GEBV is usually used 
to measure the “bias” of GEBV (Brown et al., 2018; Gao 
et al., 2012; Moghaddar et al., 2019; Oliveira et al., 2021). 
This measure was assessed as dispersion in our study, as it 
represents how the GEBV were inflated or deflated (over- 
or under-estimated, respectively). Prediction bias, as a 
property of the method and the population under evalua-
tion, is the expectation of the difference between average 
true and predicted breeding value; bias is zero under ideal 
conditions and can be approximated by the difference be-
tween the average (G)EBV in the whole and partial data 
sets (Legarra & Reverter, 2018). The observation that GEBV 
and EBV for most of the scenarios across traits were over-
estimated in the Rambouillet sheep was consistent with 
other studies (Brown et al., 2018; Moghaddar et al., 2019; 

Oliveira et al., 2021). Our conclusions regarding the ben-
efit of including genomic information in prediction based 
on dispersion followed the same pattern observed for the 
GEBV prediction accuracies; this was likely because they 
are affected by similar factors.

Reports of prediction bias in sheep, as described by 
Legarra and Reverter  (2018), are scarce and were found 
only in dairy sheep (Macedo et al., 2020, 2022). The same 
is true for TA, although this is an important metric when 
reporting breeding values back to producers. Brito, Clarke, 
et al. (2017) observed TA values ranging from 0.25 to 0.49 
across a range of growth, carcass, and meat quality traits, 
which are smaller than the values observed in the cur-
rent study. The substantial increase in the TA (Figure 4) 
especially for the young individuals using genomic infor-
mation (Figure 5) is promising because these are the key 
individuals that need to be ranked for selection purposes.

Importantly, ungenotyped close relatives of the gen-
otyped animals also had greater TA when incorporat-
ing genomic information. This suggests that genotyping 

F I G U R E  5   Theoretical accuracies for the genomic estimated breeding values using SNP (TA_GEBV) and estimated breeding values 
(TA_EBV) per genotyped individuals for birth weight (BWT), postweaning weight (PWT), yearling weight (YWT), yearling fibre diameter 
(YFD), yearling greasy fleece weight (YGFW), and number of lambs born (NLB). The TA_GEBV and TA_EBV were obtained using SNP in 
the single-step GBLUP (H-BLUP) with alpha equal to 0.95 and pedigree-based BLUP (A-BLUP), respectively. The individuals were sorted 
by birth date, so that the youngest individuals are in the right side of each plot. The black vertical line divides the training individuals in the 
partial datasets, with the focal animals on the right side of the line [Colour figure can be viewed at wileyonlinelibrary.com]
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strategies considering family information could also 
be used to improve the TA for ungenotyped individuals 
through genetic links. Similar to this study, Massender 
et al. (2022) also found that including genomic informa-
tion provided higher TA for genotyped individuals com-
pared to pedigree-based predictions in dairy goats, with 
increases for ungenotyped animals with genotyped rela-
tives. Regular and accurate pedigree collection is therefore 
encouraged to establish genetic links and evaluate which 
ungenotyped individuals could benefit more from having 
genomic information. An improved pedigree collection 
is also likely to increase the pedigree depth and quality, 
being important to control the genetic diversity of the 
population, which affects the long-term responses of the 
breeding program (Stachowicz et al.,  2018). The PCI is 
an important measure of pedigree quality and the aver-
age observed in this study (0.57) was higher than those 
for Canadian Suffolk (0.48) and for the major Canadian 
sheep breeds combined (0.50) reported by Stachowicz 
et al. (2018); nevertheless, the higher the PCI the better.

Selective genotyping can result in maximum genetic 
response (Boligon et al.,  2012), which could explain the 
improvements in the prediction results for most of the 
traits analysed using genomic information. Such was the 
case even when the predictions were based on a small 
number of individuals (242 to 632 for NLB and BWT, re-
spectively) genotyped using a moderate SNP density panel 
(~32 K SNP). Most of the prediction accuracy using ge-
nomic information is due to population structure, as de-
scribed by Daetwyler et al. (2012). Those authors showed 
that up to 86% of the prediction accuracy can be achieved 
by using only one chromosome in a multibreed sheep 
population. Although one chromosome was enough to 
capture the population structure, it was unlikely to con-
tain all the QTL affecting a trait (Daetwyler et al., 2012). 
Nevertheless, the recommendation is to increase the 
SNP panel density, through genotyping and imputation, 
for genomic predictions so that both population struc-
ture and LD between marker and QTL are fully explored 
(Daetwyler et al., 2012). Evaluating weighted single-step 
genomic predictions and genome-wide associations has 
also been encouraged (Wang et al., 2012) as there may be 
important genomic regions that explain more of the total 
additive genetic variance for the traits of interest.

Selective genotyping can increase bias in the variance 
component estimation and therefore is not recommended 
for the breeding programs that only use phenotypes and 
pedigree relationships to drive selection decisions (Wang 
et al., 2020). The potential bias from selective genotyping 
was a reason for using the variance components provided 
by the NSIP, derived using solely phenotypic and pedigree 
information. Using random selection to choose the sam-
ples to be genotyped, as well as increasing the training 

population size, is recommended to avoid bias in both 
variance component estimation and GEBV, as more biased 
predictions were observed using genomic information for 
most of the traits (Figure 2).

4.2  |  Using different alpha 
values to construct the genomic 
relationship matrices

In general, appropriate � and �parameters have more im-
pact in GEBV bias reduction (Gao et al.,  2012). Despite 
greater GEBV accuracies for a higher (0.95) � value, 0.50 
is the choice to create G in single-step evaluations for a 
range of carcass traits in terminal sire sheep breeds in 
Australia (McMillan & Swan,  2017). According to these 
authors, an � equal to 0.50 was chosen because (1) when 
increasing �, accuracies increased until reaching an as-
ymptote at around 0.50, which was not the case in the cur-
rent study; (2) the GEBV using � between 0.50 and 0.95 
were highly correlated; and (3) less variation was observed 
in the GEBV of genotyped individuals without phenotypes 
with � equal to 0.50; and (4) with higher � values, GEBV 
bias (over-prediction) increased.

In this study, using � of 0.50 showed only half of the in-
crease in the accuracies compared to 0.95. No clear advan-
tage in GEBV bias, dispersion, or TA was observed with 
one � value compared to the other. Therefore, we recom-
mend � of 0.95 for single-step genomic evaluations in U.S. 
Rambouillet sheep. However, it is important to highlight 
that our study included a smaller number of genotyped in-
dividuals compared to McMillan and Swan (2017) and we 
used the LR method (Legarra & Reverter, 2018) to derive 
the GEBV accuracies, bias, and dispersion; they instead 
used cross-validation to test their predictions with ran-
dom assignment of individuals to groups. Furthermore, 
it is recommended to evaluate the impact of different � 
and �in the creation of genomic relationships in multiple 
trait models in the future, as these parameters can also 
change for different traits (Gao et al., 2012; McMillan & 
Swan, 2017) and pedigree quality.

4.3  |  Haplotype-based single-step 
genomic predictions

The HAP-BLUP-LD_0.50 scenario was chosen to rep-
resent the haplotype-based methods because the LD of 
0.50 was the level most likely to estimate the recombi-
nation hotspots properly, which are the specific points 
in the genome with higher probability of recombination 
(Kim et al.,  2018). The use of haplotype-based methods 
did not improve the prediction results for any of the traits 
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analysed (accuracies, bias, dispersion, and TA) compared 
to fitting SNP in a real (as opposed to simulated data) 
sheep dataset. This may have been the consequence of 
not enough changes in the genomic relationships to re-
sult in differences in the GEBV to be more accurate, as 
the correlations between the G matrices using only SNP 
or SNP plus haplotypes were high (~0.99). Haplotype-
based genomic predictions could outperform SNP-based 
models in sheep datasets because the former can capture 
epistasis and these populations could have more com-
plex interactions within haplotype blocks due to higher 
effective population size. Liang et al. (2020) showed that 
epistasis was the main reason for higher GEBV accuracies 
when using haplotypes instead of SNP in seven traits in 
humans, which is a highly genetically diverse population 
(Park, 2011). However, in this study, the small number of 
genotyped individuals (n = 722) as well as the density of 
the SNP panel used (~32 K SNP) could have affected both 
SNP and haplotype genomic predictions.

The algorithm to create the LD-based haploblocks and 
the method to code the haplotypes during the creation 
of the relationship matrix could also have affected the 
prediction results. There are several algorithms to create 
LD-haploblocks, such as MATILDE (Pattaro et al., 2008), 
confidence interval (Gabriel et al., 2002), four gamete test 
(Wang et al., 2002), solid spine (Barrett et al., 2005), MIG++ 
(Taliun et al., 2014), S-MIG++ (Taliun et al., 2016), and 
Big-LD (Kim et al., 2018). We have used the Big-LD algo-
rithm to construct the haploblocks because the LD blocks 
produced by this method agree better with the true recom-
bination hotspots (determined experimentally in the major 
histocompatibility complex region from semen of north-
European British donors) and are more computationally 
efficient than the previously mentioned algorithms (Kim 
et al., 2018). However, as the haplotype diversity index and 
true discovery ratio of the recombination hotspots can be 
lower using Big-LD (Kim et al., 2018), evaluating different 
algorithms to create the LD-haplotype blocks is also rec-
ommended. New methods based on clustering algorithms 
(Won et al.,  2020) and machine learning methods (Lim 
et al., 2022) have been recently proposed to create and se-
lect the best haplotypes to be used, respectively. These ap-
proaches should be evaluated in future studies with larger 
genomic datasets and populations with different genetic 
backgrounds.

The haplotypes can be multiallelic markers (Calus 
et al.,  2008; Gabriel et al.,  2002). However, we used the 
unique multiallelic haplotype alleles coded as ps-SNP to 
perform genomic predictions under the ssGBLUP frame-
work. The ps-SNP derived from the LD-haploblocks were 
then merged with the NCSNP to create the G matrix, sim-
ilar to Araujo et al.  (2021). This strategy enables fitting 
haplotypes to perform genomic predictions using software 

developed for fitting individual SNP (Teissier et al., 2020), 
including or excluding non-genotyped individuals 
(ssGBLUP and GBLUP, respectively). Teissier et al. (2020) 
considered both NCSNP and unique multiallelic haplo-
type alleles as ps-SNP and observed up to 22% increase in 
GEBV prediction accuracy when using different LD- or 
fixed-SNP-length-based haploblocks for milk production 
traits in dairy goats using ssGBLUP. Milk production traits 
are known to be affected by a major gene (DGAT1). In gen-
eral, GEBV prediction results for haplotype-based meth-
ods are scarce in small ruminants and additional studies 
are needed.

The GVCHAP is a computing pipeline that allows 
multiallelic haplotypes to be used directly to create a 
genomic additive (and dominance) relationship matrix 
for both genomic prediction and variance component 
estimation using haplotypes or SNP (Prakapenka et al., 
2020). GVCHAP is based in the multiallelic haplotype 
model proposed by Da (2015), which uses the quantita-
tive genetic theory to derive a general multiallelic parti-
tion of genotypic values with factorization to define the 
genomic relationships. However, the GVCHAP is based 
on GREML and GBLUP and, thus, only considers gen-
otyped individuals with phenotypes. Considering the 
different algorithms and methods to create haploblocks, 
code the haplotype alleles, and create the genomic re-
lationship matrix including haplotypes, there are still 
further alternatives to evaluate the feasibility of includ-
ing haplotypes in genomic predictions. Future studies 
in sheep could also consider the possibility of creating 
haplotypes based on functional information (e.g., gene 
regions) to perform haplotype predictions (Da,  2015; 
Prakapenka et al., 2020).

Despite the hypothesis that haplotypes could outperform 
SNP and provide high accuracies and lower bias in genomic 
predictions, recent results have shown that this does not 
usually happen. As summarized by Araujo et al. (2021), the 
benefits of using haplotype-based methods for genomic pre-
diction are equivocal most of the time. Significant improve-
ments usually occur mainly in the evaluation of traits with 
major genes, as shown by Teissier et al. (2020). Nevertheless, 
as stated before, there are haplotype blocking and selection 
methods that should be further investigated. There are 
methods that might be able to better capture the haplotype 
variation and improve GEBV accuracy.

Marker density can also affect the accuracy of SNP phas-
ing (Weng et al., 2014) and the precision in which the re-
combination hotspots are determined (Weng et al.,  2019), 
which are the first steps for the haplotype prediction and the 
basis of the LD-based haploblocks, respectively. In addition, 
epistasis, which is the component that might contribute the 
most to improvements in accuracy with haplotype predic-
tions (Liang et al., 2020), is a complex effect and requires a 
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substantial number of individuals and markers/bins to be 
properly estimated (Zhang et al., 2016).

Despite the fact that we genotyped individuals for SNP 
panel with a higher density (50 K and 600 K) than the one 
used in this research (35 K), genotype imputation prior to 
haplotype blocking and prediction can also be hampered by 
the number of reference individuals (Ventura et al., 2016). 
In early stages of this research, we imputed the 50 K panel 
from the overlapping 35 K SNP panel for those animals 
with HD genotypes. The results of genomic predictions 
using the imputed 50 K for both SNP and haplotype-based 
methods (Appendix S4: Tables S1–S6) were similar to that 
using only the overlapping ~35 K SNPs, except for the YGFW 
(Appendix S4: Table S5). This likely happened because in-
creasing the SNP density of only ~60 individuals by ~6 K SNP 
(imputed variants that passed a QC similar to that described 
in the section 2.2) to create the G matrix to be combined with 
A to create the H−1 was not large enough to result in signifi-
cant improvements in the genomic predictions. The imputa-
tion accuracy for SNP and individuals was ~80% and ~77%, 
respectively, which were below the 90% threshold suggested 
by Bolormaa et al. (2015).

Even though the accuracy of predictions for YGFW using 
haplotypes based on imputed 50 K panels was higher (up to 
~0.09 compared to predictions using the 35 K panel), gener-
ally predictions using the imputed 50 K were more biased 
and the GEBV were more dispersed for all traits. Legarra 
and Reverter  (2018) emphasized that accuracies should 
only be estimated and compared from empirically unbiased 
models. The results of the LR statistics using the imputed set 
of markers could have been affected by bias because of the 
imputation process due to limitations in the size of the ref-
erence population. Our results based on the 35 K SNP panel 
should therefore be used considering the Rambouillet sheep 
currently genotyped. Larger reference populations and 
denser SNP panels are recommended to evaluate genomic 
predictions using haplotypes in future sheep studies.

5   |   CONCLUSIONS

Using genomic information (SNP or haplotypes as 
pseudo-SNP) provided similar or higher GEBV prediction 
and theoretical accuracies, and reduced the dispersion 
of the GEBV, for body weight, wool, and reproduc-
tive traits in Rambouillet sheep. However, there were 
no clear improvements in prediction bias compared to 
pedigree-based predictions. Alpha value equal to 0.95 is 
recommended to weight the genomic relationships when 
modelling the covariances between individuals. The use 
of haplotypes showed no advantage compared to SNP at 
the current reference population size and SNP panel den-
sity used, regardless of the LD threshold used to create 

the haploblocks. SNP-based genomic predictions are 
therefore recommended since they are easier to imple-
ment than those based on haplotypes. Efforts to increase 
the number of genotyped individuals are paramount to 
take full advantage of genomic information to accelerate 
genetic progress in the U.S. Rambouillet sheep breeding 
program.
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